Заголовок:
Комментарий:
Готово, можно копировать.
РЕШУ ЦТ — математика ЦЭ
Вариант № 2968
1.  
i

Ука­жи­те номер ри­сун­ка, на ко­то­ром изоб­ра­жен рав­но­бед­рен­ный тре­уголь­ник.

1)

2)

3)

4)

5)

1) 1
2) 2
3) 3
4) 4
5) 5
2.  
i

Об­ра­зу­ю­щая ко­ну­са равна 26 и на­кло­не­на к плос­ко­сти ос­но­ва­ния под углом 60°. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са.

1) 338 Пи
2) 338 ко­рень из 3 Пи
3) 169 Пи
4) 260 ко­рень из 3 Пи
5) 676 Пи
3.  
i

Вы­ра­зи­те a из ра­вен­ства  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2b плюс 1 конец дроби = дробь: чис­ли­тель: 6, зна­ме­на­тель: a минус b конец дроби .

1) a=5b плюс 2
2) a=5b минус 2
3) a=15b минус 6
4) a=15b плюс 6
5) a=3b плюс 1
4.  
i

Даны пары зна­че­ний пе­ре­мен­ных x и y: (3; 9); (−15; 3); (0; 12); (14; −2); (6; 6). Ука­жи­те пару, ко­то­рая НЕ яв­ля­ет­ся ре­ше­ни­ем урав­не­ния x + y  =  12.

1) (3; 9)
2) (−15; 3)
3) (0; 12)
4) (14; −2)
5) (6; 6)
5.  
i

Опре­де­ли­те ко­ор­ди­на­ту точки А, изоб­ра­жен­ной на ко­ор­ди­нат­ной пря­мой.

1) −7;
2) −1;
3)  минус дробь: чис­ли­тель: 7, зна­ме­на­тель: 8 конец дроби ;
4) −8;
5)  минус дробь: чис­ли­тель: 8, зна­ме­на­тель: 7 конец дроби .
6.  
i

Све­жие фрук­ты при сушке те­ря­ют a % своей массы. Ука­жи­те вы­ра­же­ние, опре­де­ля­ю­щее массу сухих фрук­тов (в ки­ло­грам­мах), по­лу­чен­ных из 20 кг све­жих.

1)  дробь: чис­ли­тель: 2000, зна­ме­на­тель: a конец дроби
2)  дробь: чис­ли­тель: 20 левая круг­лая скоб­ка 100 минус a пра­вая круг­лая скоб­ка , зна­ме­на­тель: 100 конец дроби
3)  дробь: чис­ли­тель: 2000, зна­ме­на­тель: 100 минус a конец дроби
4)  дробь: чис­ли­тель: 20 левая круг­лая скоб­ка 100 плюс a пра­вая круг­лая скоб­ка , зна­ме­на­тель: 100 конец дроби
5)  дробь: чис­ли­тель: 2000, зна­ме­на­тель: 100 плюс a конец дроби
7.  
i

На одной сто­ро­не пря­мо­го угла О от­ме­че­ны две точки А и В так, что ОА  =  1,7, OB  =  а, ОА < ОВ. Со­ставь­те фор­му­лу, по ко­то­рой можно вы­чис­лить ра­ди­ус r окруж­но­сти, про­хо­дя­щей через точки А, В и ка­са­ю­щей­ся дру­гой сто­ро­ны угла.

1) r= дробь: чис­ли­тель: a плюс 1,7, зна­ме­на­тель: 2 конец дроби
2) r= дробь: чис­ли­тель: a минус 1,7, зна­ме­на­тель: 2 конец дроби
3) r=a плюс 1,7
4) r= дробь: чис­ли­тель: a плюс 3,4, зна­ме­на­тель: 2 конец дроби
5) r=2a минус 1,7
8.  
i

По­сле­до­ва­тель­ность (an) за­да­на фор­му­лой n-ого члена an  =  3n−1 · (7 − n). Най­ди­те пятый член этой по­сле­до­ва­тель­но­сти.

1) 27
2) 162
3) 324
4) 81
5) 243
9.  
i

Упро­сти­те вы­ра­же­ние  ко­рень из: на­ча­ло ар­гу­мен­та: 81x в квад­ра­те конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 36y в квад­ра­те конец ар­гу­мен­та , если x боль­ше или равно 0 и y мень­ше или равно 0.

1) 9x минус 6y
2)  минус 9x минус 6y
3)  минус 9x плюс 6y
4) 9x плюс 6y
5) 9x плюс 18y
10.  
i

Най­ди­те наи­боль­шее на­ту­раль­ное дву­знач­ное число, ко­то­рое при де­ле­нии на 11 дает в остат­ке 7.

1) 18
2) 95
3) 99
4) 97
5) 92
11.  
i

Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: x минус 5 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка конец ар­гу­мен­та =0. В ответ за­пи­ши­те сумму его кор­ней (ко­рень, если он один).

12.  
i

Вы­бе­ри­те все вер­ные утвер­жде­ния, яв­ля­ю­щи­е­ся свой­ства­ми не­чет­ной функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , опре­делённой на x при­над­ле­жит левая круг­лая скоб­ка минус бес­ко­неч­ность ; бес­ко­неч­ность пра­вая круг­лая скоб­ка и за­дан­ной фор­му­лой f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =x в квад­ра­те плюс 10x при x\leqslant0.

1.  Функ­ция имеет три нуля.

2.  Функ­ция убы­ва­ет на про­ме­жут­ке [6; 9].

3.  Мак­си­мум функ­ции равен 25.

4.  Ми­ни­маль­ное зна­че­ние функ­ции равно -25.

5.  f левая круг­лая скоб­ка f левая круг­лая скоб­ка 1 пра­вая круг­лая скоб­ка плюс 1 пра­вая круг­лая скоб­ка =0.

6.  Функ­ция при­ни­ма­ет от­ри­ца­тель­ные зна­че­ния при x при­над­ле­жит левая квад­рат­ная скоб­ка 10; 14 пра­вая квад­рат­ная скоб­ка .

7.  Гра­фик функ­ции сим­мет­ри­чен от­но­си­тель­но оси абс­цисс.

 

Ответ за­пи­ши­те в виде по­сле­до­ва­тель­но­сти цифр в по­ряд­ке воз­рас­та­ния. На­при­мер: 123.

13.  
i

Для на­ча­ла каж­до­го из пред­ло­же­ний под­бе­ри­те его окон­ча­ние 1-5 так, чтобы по­лу­чи­лось вер­ное утвер­жде­ние.

На­ча­ло

A)  Зна­че­ние вы­ра­же­ния 2 в сте­пе­ни левая круг­лая скоб­ка минус 8 пра­вая круг­лая скоб­ка :2 в сте­пе­ни 0 равно:

Б)  Зна­че­ние вы­ра­же­ния  минус 2 в сте­пе­ни левая круг­лая скоб­ка минус 11 пра­вая круг­лая скоб­ка умно­жить на 8 равно:

В)  Зна­че­ние вы­ра­же­ния 20 в сте­пе­ни 4 : левая круг­лая скоб­ка минус 5 пра­вая круг­лая скоб­ка в сте­пе­ни 4 равно:

Окон­ча­ние

1)  256

2)  −256

3)   минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 256 конец дроби

4)   дробь: чис­ли­тель: 1, зна­ме­на­тель: 256 конец дроби

5)  32

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер: А1Б1В4.

14.  
i

На кру­го­вой диа­грам­ме пред­став­ле­на ин­фор­ма­ция о про­да­же 200 кг ово­щей в те­че­ние дня. Для на­ча­ла каж­до­го из пред­ло­же­ний А  — В под­бе­ри­те его окон­ча­ние 1  — 6 так, чтобы по­лу­чи­лось вер­ное утвер­жде­ние.

На­ча­ло пред­ло­же­ния

А)  Масса (в ки­ло­грам­мах) про­дан­ной ка­пу­сты равна ...

Б)  От­но­ше­ние, вы­ра­жен­ное в про­цен­тах, ко­то­рое по­ка­зы­ва­ет, на сколь­ко масса про­дан­но­го кар­то­фе­ля мень­ше массы про­дан­ных по­ми­до­ров, равно ...

В)  От­но­ше­ние, вы­ра­жен­ное в про­цен­тах, ко­то­рое по­ка­зы­ва­ет, на сколь­ко масса про­дан­ной свек­лы боль­ше массы про­дан­но­го лука, равно ...

Окон­ча­ние пред­ло­же­ния

1)   25

2)  40

3)  4

4)  125

5)  38

6)  19

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер: А1Б1В4.

15.  
i

Гра­дус­ная мера угла ABC равна 126°. Внут­ри угла ABC про­ве­ден луч BD, ко­то­рый делит дан­ный угол в от­но­ше­нии 1 : 6 (см. рис.). Най­ди­те гра­дус­ную меру угла 1, если BO  — бис­сек­три­са угла DBC.

16.  
i

В ос­но­ва­нии пря­мой че­ты­рех­уголь­ной приз­мы ABCDA1B1C1D1 лежит тра­пе­ция ABCD, у ко­то­рой ∠C = 90°, BC и AD  — ос­но­ва­ния, BC = CC1. Плос­кость, ко­то­рая про­хо­дит через ребро DC и вер­ши­ну A1 приз­мы, об­ра­зу­ет угол  альфа = арк­тан­генс дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби с плос­ко­стью ос­но­ва­ния (см. рис.) и от­се­ка­ет часть NC1CA1D1D. Если объем приз­мы равен 48, то объем остав­шей­ся части равен … .

17.  
i

По двум пер­пен­ди­ку­ляр­ным пря­мым, ко­то­рые пе­ре­се­ка­ют­ся в точке O, дви­жут­ся две точки M1 и M2 по на­прав­ле­нию к точке O со ско­ро­стя­ми 1  дробь: чис­ли­тель: м, зна­ме­на­тель: с конец дроби и 2  дробь: чис­ли­тель: м, зна­ме­на­тель: с конец дроби со­от­вет­ствен­но. До­стиг­нув точки O, они про­дол­жа­ют свое дви­же­ние. В пер­во­на­чаль­ный мо­мент вре­ме­ни M1O = 5 м, M2O = 20 м. Через сколь­ко се­кунд рас­сто­я­ние между точ­ка­ми M1 и M2 будет ми­ни­маль­ным?

18.  
i

Най­ди­те пе­ри­метр пра­виль­но­го ше­сти­уголь­ни­ка, мень­шая диа­го­наль ко­то­ро­го равна 10 ко­рень из 3 .

19.  
i

Най­ди­те зна­че­ние вы­ра­же­ния 16 синус левая круг­лая скоб­ка альфа минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка , если  синус 2 альфа = дробь: чис­ли­тель: 23, зна­ме­на­тель: 32 конец дроби , 2 альфа при­над­ле­жит левая круг­лая скоб­ка 0; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка .

20.  
i

Пусть (x1; y1), (x2; y2)  — ре­ше­ния си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний x в квад­ра­те плюс 4x=15 плюс 3y,4x минус 3y=6. конец си­сте­мы .

Най­ди­те зна­че­ние вы­ра­же­ния x_1y_2 плюс x_2y_1.

21.  
i

Най­ди­те сумму кор­ней урав­не­ния  левая круг­лая скоб­ка x минус 81 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка 9 в сте­пе­ни x плюс 8 умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка минус 81 пра­вая круг­лая скоб­ка =0.

22.  
i

Най­ди­те про­из­ве­де­ние наи­боль­ше­го ре­ше­ния на ко­ли­че­ство ре­ше­ний урав­не­ния |x в квад­ра­те минус 4|x| минус 1|=0,5 в сте­пе­ни левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка .

23.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка x_0 плюс 11 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,5 пра­вая круг­лая скоб­ка 81, зна­ме­на­тель: ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,5 пра­вая круг­лая скоб­ка 3 конец дроби пра­вая круг­лая скоб­ка , где x0  — ко­рень урав­не­ния  ло­га­рифм по ос­но­ва­нию 5 левая круг­лая скоб­ка 24 минус 12x пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию 5 левая круг­лая скоб­ка x в квад­ра­те минус 7x плюс 10 пра­вая круг­лая скоб­ка .

24.  
i

На ри­сун­ке изоб­ра­жен гра­фик функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , за­дан­ной на про­ме­жут­ке  левая квад­рат­ная скоб­ка минус 6; 14 пра­вая квад­рат­ная скоб­ка . Най­ди­те про­из­ве­де­ние зна­че­ний ар­гу­мен­та, при ко­то­рых f в сте­пе­ни левая круг­лая скоб­ка \prime пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =0. (Чер­ны­ми точ­ка­ми от­ме­че­ны узлы сетки, через ко­то­рые про­хо­дит гра­фик функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка . пра­вая круг­лая скоб­ка

25.  
i

Длины сто­рон па­рал­ле­ло­грам­ма от­но­сят­ся как 2 : 3, а вы­со­та, про­ве­ден­ная к боль­шей сто­ро­не, равна 6. Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та умно­жить на S, где S  — пло­щадь па­рал­ле­ло­грам­ма, если один из углов па­рал­ле­ло­грам­ма равен 120°.

26.  
i

Пусть A= левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 15 плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 15 пра­вая круг­лая скоб­ка 2 минус 2} пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 0,5 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 7,5 пра­вая круг­лая скоб­ка 15 умно­жить на ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 0,5 пра­вая круг­лая скоб­ка 15 минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 1,5 пра­вая круг­лая скоб­ка 15 пра­вая круг­лая скоб­ка плюс 4 ло­га­рифм по ос­но­ва­нию 4 в квад­ра­те 15.

Най­ди­те зна­че­ние вы­ра­же­ния 2A.

27.  
i

Пря­мая, про­хо­дя­щая через вер­ши­ну К тре­уголь­ни­ка KMN, делит его ме­ди­а­ну MA в от­но­ше­нии 8 : 3, счи­тая от вер­ши­ны M, и пе­ре­се­ка­ет сто­ро­ну MN в точке B. Най­ди­те пло­щадь тре­уголь­ни­ка KMN, если пло­щадь тре­уголь­ни­ка KMB равна 16.

28.  
i

Най­ди­те (в гра­ду­сах) наи­мень­ший ко­рень урав­не­ния  ко­си­нус 8 x умно­жить на ко­си­нус 7 x минус синус 8 x умно­жить на синус 7 x= минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби на про­ме­жут­ке  левая круг­лая скоб­ка минус 75 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка ; 0 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка .

29.  
i

При де­ле­нии не­ко­то­ро­го на­ту­раль­но­го дву­знач­но­го числа на сумму его цифр не­пол­ное част­ное равно 6, а оста­ток равен 7. Если цифры дан­но­го числа по­ме­нять ме­ста­ми и по­лу­чен­ное число раз­де­лить на сумму его цифр, то не­пол­ное част­ное будет равно 4, а оста­ток будет равен 6. Най­ди­те ис­ход­ное число.

30.  
i

Ре­ши­те урав­не­ние

 дробь: чис­ли­тель: 30x в квад­ра­те , зна­ме­на­тель: x в сте­пе­ни 4 плюс 25 конец дроби =x в квад­ра­те плюс 2 ко­рень из 5 x плюс 8.

В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния x умно­жить на |x|, где x  — ко­рень урав­не­ния.